A squid dynein isoform promotes axoplasmic vesicle translocation
نویسندگان
چکیده
Axoplasmic vesicles that translocate on isolated microtubules in an ATP-dependent manner have an associated ATP-binding polypeptide with a previously estimated relative molecular mass of 292 kD (Gilbert, S. P., and R. D. Sloboda. 1986. J. Cell Biol. 103:947-956). Here, data are presented showing that this polypeptide (designated H1) and another high molecular mass polypeptide (H2) can be isolated in association with axoplasmic vesicles or optic lobe microtubules. The H1 and H2 polypeptides dissociate from microtubules in the presence of MgATP and can be further purified by gel filtration chromatography. The peak fraction thus obtained demonstrates MgATPase activity and promotes the translocation of salt-extracted vesicles (mean = 0.87 microns/s) and latex beads (mean = 0.92 microns/s) along isolated microtubules. The H1 polypeptide binds [alpha 32P]8-azidoATP and is thermosoluble, but the H2 polypeptide does not share these characteristics. In immunofluorescence experiments with dissociated squid axoplasm, affinity-purified H1 antibodies yield a punctate pattern that corresponds to vesicle-like particles, and these antibodies inhibit the bidirectional movement of axoplasmic vesicles. H2 is cleaved by UV irradiation in the presence of MgATP and vanadate to yield vanadate-induced peptides of 240 and 195 kD, yet H1 does not cleave under identical conditions. These experiments also demonstrate that the actual relative molecular mass of the H1 and H2 polypeptides is approximately 435 kD. On sucrose density gradients, H1 and H2 sediment at 19-20 S, and negatively stained samples reveal particles comprised of two globular heads with stems that contact each other and extend to a common base. The results demonstrate that the complex purified is a vesicle-associated ATPase whose characteristics indicate that it is a squid isoform of dynein. Furthermore, the data suggest that this vesicle-associated dynein promotes membranous organelle motility during fast axoplasmic transport.
منابع مشابه
Plus-end motors override minus-end motors during transport of squid axon vesicles on microtubules
Plus- and minus-end vesicle populations from squid axoplasm were isolated from each other by selective extraction of the minus-end vesicle motor followed by 5'-adenylyl imidodiphosphate (AMP-PNP)-induced microtubule affinity purification of the plus-end vesicles. In the presence of cytosol containing both plus- and minus-end motors, the isolated populations moved strictly in opposite directions...
متن کاملDrosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies.
In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its destination, gurke...
متن کاملStable Complexes of Axoplasmic Vesicles and Microtubules: Protein Composition and ATPase Activity
Fast transport of axonal vesicles and organelles is a microtubule-associated movement (Griffin, J. W., K. E. Fahnestock, L. Price, and P. N. Hoffman, 1983, J. Neuroscience, 3:557-566; Schnapp, B. J., R. D. Vale, M. P. Sheetz, and T. S. Reese, 1984, Cell, 40:455-462; Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson, 1985, J. Cell Biol., 100:1736-1752). Proteins t...
متن کاملStable complexes of axoplasmic vesicles and microtubules: protein composition and ATPase activity
Fast transport of axonal vesicles and organelles is a microtubule-associated movement (Griffin, J. W., K. E. Fahnestock, L. Price, and P. N. Hoffman, 1983, J. Neuroscience, 3:557-566; Schnapp, B. J., R. D. Vale, M. P. Sheetz, and T. S. Reese, 1984, Cell, 40:455-462; Allen, R. D., D. G. Weiss, J. H. Hayden, D. T. Brown, H. Fujiwake, and M. Simpson, 1985, J. Cell Biol., 100:1736-1752). Proteins t...
متن کاملIdentification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules
Axoplasmic vesicles were purified and observed to translocate on isolated microtubules in an ATP-dependent, trypsin-sensitive manner, implying that ATP-binding polypeptides essential for force generation were present on the vesicle surface. To identify these proteins [alpha 32P]8-azidoadenosine 5'-triphosphate ([alpha 32P]8-N3ATP), a photoaffinity analogue of ATP, was used. The results presente...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 109 شماره
صفحات -
تاریخ انتشار 1989